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A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of

flying insects and small birds as well as biologically inspired flapping-wingmicro air vehicles. The present numerical

model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an

attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with

computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting,

flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in

previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift,

and frequency content of the force are in goodagreementwith experimental data for the robofly apparatus.The actual

wingmotion of a hoveringDrosophila is used to compute the flowfield andpredict the lift force. Thedownwardmotion

of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the

calculatedmean lift is in close agreementwith theweight of aDrosophila. The results presented in this paper definitely

show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft.

The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.

Nomenclature

AR = aspect ratio
A�t� = aerodynamic influence matrix
c, cmax = wing chord and maximum chord length
CL = lift coefficient
L, �L = lift force and mean lift force
Lb = body length
n̂ = unit vector normal to the body surface
nf, Tf = flapping frequency and flapping period
p�r; t�, p∞ = unknown pressure and pressure far away from

the body
R = wing length
Re = Reynolds number
r = position vector
Rnode, Vnode = position and velocity of an aerodynamic-

panel corner
t, t� = dimensional and nondimensional time
V�r; t� = velocity field
VP, V∞ = body-surface velocity and freestream velocity
αe, αc = effective angle of attack and reference angle

of attack
Γ�t� = circulation associated to a finite segment of a

vortex line
δ = cutoff radius
η�t� = twisting angle

νair, νoil = air kinematic viscosity and oil kinematic
viscosity

ρ, ρoil = constant density and density of the oil used in
the robofly experiment

χ, β = body angle and stroke plane angle
Φ = wing beating amplitude
ϕ�t�, θ�t�, ψ�t� = stroke position angle, stroke deviation angle,

and rotation angle
Ψ�r; t� = potential velocity
Ω = vorticity field
ω = finite vortex segment

I. Introduction

S INCE several years ago, the scientific community has
specifically focused on the study of flying insects and small

birds in order to inspire the development of micro aerial vehicles
(MAVs) with flapping wings. Nevertheless, there are still major
technical barriers to be overcome, such as to definitely understand
how these flying creatures generate sufficient aerodynamic forces in
order to propel themselves and stay aloft. There are a number of
experimental investigations on the aerodynamic of insect flight,
many of them carried out by Dickinson and Götz [1] and Ellington
[2], Van den Berg and Ellington [3], and Ellington et al. [4], which
provide comprehensive studies of the unsteady aerodynamic
mechanisms used by flying insects and small birds. From a numerical
point of view, clearly, the best approach to understanding flight at
small scales would be to solve for the complete viscous flow around
the insect or bird. However, solutions of the full Navier–Stokes
equations for three-dimensional (3-D), unsteady flowfields having
boundaries experiencing relatively large complicated motions are
challenging to solve. Significant computational difficulties and cost
associated to the use of models based on computational fluid
dynamics (CFD) techniques have led to the utilization of a large
variety of aerodynamic models to study the natural flight.
Vest andKatz used a panel method to numerically model flapping-

wing aerodynamics [5]. Ramamurti and Sandberg [6] employed the
Euler equations to compute the 3-D flow around a fly’s wing and then
compared their numerical results with the experimental results
obtained byDickinson et al. [7], finding good agreement.Ansari et al.
[8,9] extended the work of Von Karman and Sears [10] to include the
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leading-edge vortex (LEV) effects by shedding vortices from both of
the leading and trailing edges. They derived two nonlinear integral
equations for the shed wake and leading-edge vortices. Because of
the computational cost associated with this formulation, its use in
aerodynamic analysis, sensitivity analysis, and dynamic and control
is still limited. Ansari et al. also compared their results with those
obtained by Dickinson.
Liu and Kawachi [11] and Liu et al. [12] used a CFD model to

study the unsteady aerodynamics of the flapping wings of a hovering
hawkmoth (manduca sexta). They detected a LEV with axial flow
during translational motions consistent with the results observed by
Ellington et al. [4]. Sun and Tang [13,14] used a time-dependent
body-conforming grid to obtain a 3-D solution for the flow around a
fruit-fly wing. They confirmed the results observed by Dickinson
[15] on force enhancement influenced by the timing of the wing’s
rotationwhile translating. Sun andDu [16] performed the same study
on a wide range of eight insects. Sun andWu [17] solved the Navier–
Stokes equations on the wing and body of the fruit fly in forward
flight. Tang et al. [18] used a CFD code to investigate the wake-
capturemechanismduring hovering flight. The computational results
of Tang and coauthors identified a secondary lift peak after the stroke
reversal while hovering, also in good agreement with the results
observed by Dickinson et al. [7]. Also, it is worthwhile to look at the
model of DeLaurier [19] for forward flight. This model aimed at
checking the aerodynamic calculations of the Pterosaur developed by
AeroVironment, and it included low-fidelity representations of the
3-D unsteady effects, friction effects, partial leading-edge suction,
and a poststall behavior.
Currently, the use of unsteady vortex-lattice methods (UVLMs)

has been gaining ground in the study of nonstationary problems in
which free-wake methods become a necessity because of geometric
complexity, such as flapping-wing kinematics, morphing wings, and
rotorcraft, among others. The pioneering works in the development
of UVLMs were carried out by Belotserkovskii [20], Rehbach [21],
and researchers at Virginia Tech [22,23] and Technion [24,25].
Possibly themost comprehensive description ofUVLMwas given by
Katz and Plotkin [26]. Related to flapping-wing aerodynamics, five
terms can be identified as the main contributors to flow quantities
during hover. They include the effects due to the wing’s translation
and rotation, the LEV, wake capture, viscosity, and added mass.
UVLMs capture all except the viscous and the LEVeffects. As shown
by the experiments ofDickinson et al. [1,7], theviscous effects for the
range of Reynolds numbers (75–4000) of hovering MAVs/insects
can be neglected, which makes the use of the UVLM suitable for the
study of flapping-wing aerodynamics.
Fritz andLong [27] implemented theUVLMusing object-oriented

computing techniques to model the oscillating plunging, pitching,
twisting, and flappingmotions of a finite-aspect-ratiowing. Thework
carried out by Fritz and Long showed that the method is capable of

accurately simulatingmany of the features of complex flapping-wing
flight, although their model does not take into account the leading-
edge-vortex phenomenon. Stanford and Beran [28] also used
UVLMs to consider the design optimization of a flapping wing in
forward flight with active shape morphing, aimed at maximizing
propulsive efficiency under lift and thrust constraints. Ghommem
et al. [29] tackled the same problem using global and hybrid
optimization techniques. Ghommem used a two-dimensional (2-D)
version of the UVLM to obtain the hovering kinematics that
minimizes the required aerodynamic power under a lift constraint.
Willis et al. [30] presented a simulation tool, FastAero, which uses a
panel method along with an approach based on vortex particles to
represent the wake shed from the wing’s trailing edge. The approach
used by Willis and coworkers was demonstrated to be efficient and
accurate to study a variety of problems involving unsteady flows and
highly flexible lifting surfaces undergoing complex motions.
Eldredge [31] also used a method based on vortex particles to carry
out numerical simulations of the fluid dynamics of 2-D rigid-body
motion, and he showed its utility for investigating biological loco-
motion: a flapping elliptical wing with hovering insect kinematics,
with good agreement of forces with previous results reported by
Wang et al. [32] and a three-linkage “fish” undergoing undulating
motion. For more details on the aerodynamics of flapping flight, the
reader is referred to [33–37]. The different models previously
discussed in the literature review are summarized in Table 1.
In this paper, we significantly extend the capability of UVLMs

in order to study the aerodynamics of a fruit fly (Drosophila
Melanogaster) by including 1) leading-edge separation, 2) the
insect’s body structure (head, thorax, and abdomen), and 3) different
kinematic patterns. The present aerodynamic model takes into
account all possible aerodynamic interference and allows us to
predict 1) the flowfield around an insect’s body and wings, 2) the
spatial–temporal vorticity distribution attached to the insect’s body
and wings, 3) the vorticity distribution in the wakes emitted from the
sharp edges of the wings, 4) the position and shape of these wakes,
and 5) the unsteady aerodynamic loads acting on the wings.
Because the UVLM models inviscid flow, it is not capable to

predict Reynolds-number effects, and therefore, the location of
separation, such as along the wing tips, trailing edges, and leading
edges, aswell as other possibilities, must be input by the programmer.
In this work, the leading-edge separation was taken into account by
means of a simply scheme based upon an on/off mechanism.
To the best of the authors’ knowledge, an aerodynamic study of

flapping wings in hover motion by means of an UVLM involving a
free deforming wake in the time domain, time-dependent geometries
and largely attached flows is unavailable in the literature, and it is the
focus of the presentwork. Furthermore, itmust be highlighted that the
model developed in this work provides an attractive compromise
between computational cost and fidelity.

Table 1 Summary table of numerical aerodynamic models

Authors Model Application

Vest and Katz [5] Panel method (3-D) Flapping wing at high advanced ratios (J � 4.31) and
high-frequency flapping flight (J � 0.76)

Ramamurti and Sandberg [6] Incompressible Navier–Stokes equations (3-D) Fruit fly
Ansari et al. [8,9] UVLM (2-D), extended to 3-D by means of the

blade-element theory (radial chords)
Insectlike flapping wing

Liu et al. [11,12] Incompressible unsteady Navier–Stokes equations (3-D) Manduca Sexta flight
Sun and Tang [13,14] Incompressible unsteady Navier–Stokes equations (3-D) Fruit fly
Sun and Du [16] Sun and Tang model [13,14] Fruit fly, crane fly, ladybird, hawkmoth, hoverfly,

dronefly, honey bee, and bumble bee
Sun and Wu [17] Sun and Tang model [13,14] Fruit fly
Tang et al. [18] Incompressible unsteady Navier–Stokes

equations (2-D)
Elliptic airfoil–water treading, hovering mode,
and normal hovering mode

DeLaurier [19] A modified strip theory Pterosaur developed by AeroVironment
Fritz and Long [27] UVLM (3-D) Finite-aspect-ratio wing undergoing oscillating plunging,

pitching, twisting, and flapping motions
Stanford and Beran [28] UVLM (3-D) Optimization of morphing wings
Ghommem et al. [29] UVLM (3-D) Global optimization of morphing wings
Willis et al. [30] Panel method combined with vortex particles (3-D) Morphing wings/flapping wings
Eldredge [31] Vortex-particle method (2-D) Biological locomotion

ROCCIA ETAL. 2629

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

M
A

R
Y

L
A

N
D

 o
n 

A
pr

il 
27

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
22

62
 



The remainder of this work is organized as follows. A brief
introduction to the natural flight of insects, including the unsteady
aerodynamic mechanisms that characterize the flight at small
scales, is given. This is followed by a general description of both the
insect-wing kinematic model and the UVLM, as well as a detailed
explanation of the leading-edge separation model. Next, the
aerodynamicmodel is validated by comparing numerical results with
those obtained by Stanford and Beran [28] and Neef and Hummel
[38] and, finally, with the force data reported by Dickinson et al. [7].
Then, the numerical results for a fruit fly in hover are presented. The
work concludes stating the limitations of the model and how these
issues can be addressed in order to extend its applicability.

II. Model Description

A. Model Insect

The insect model adopted in this paper to study the aerodynamics
of flapping wings corresponds to a fruit fly (Drosophila
Melanogaster). The model is based on the work of Markow and
O’Grady to preserve certain morphological parameters such as wing
lengthR, body lengthLb, maximumchord length cmax, and geometry
of the wing and the insect’s body (see Fig. 1) [39].
For simplicity, each part of the insect’s body (head, thorax, and

abdomen) was modeled as a surface of revolution. This model was
entirely implemented in MATLAB® using a parametric technique
that allows, easily and interactively, the construction of computa-
tional models of insects of different sizes while preserving the
creature’s proportions. The surfaces of revolution that define the
insect’s body as well as the surfaces that models the insect’s wings
were discretized using simple, nonplanar, quadrilateral four-node
elements. This discretization is explained in Sec. II.C.2.

B. Kinematical Model

To describe the trajectory of any arbitrary point on the insect’s
wing, we used four reference systems, including 1) an inertial or
Newtonian reference system N, 2) a body-fixed system T located at
themass center of the thorax, 3) a reference system fixed to the stroke
planeZ, and 4) two reference systems fixed to eachwing root in order
to facilitate its special discretization B for the left wing and A for the
right wing (see Fig. 2).
The orientation of the insect’s body is exclusively affected by a

change in the body angle χ and is obtained by means of one rotation
(1 – rotation) of the reference frame T.
The orientation of the stroke planewith respect to the inertial frame

N is accomplished in two stages. First, the stroke plane is positioned
perpendicularly to the longitudinal axis of the insect by means of the
body angle, and next, the stroke plane is orientated with respect to an
axis perpendicular to the longitudinal axis of the creature bymeans of
the stroke-plane angle β.
The wing’s orientation relative to the stroke plane is defined by

three angles, including 1) the stroke position angle ϕ�t�; 2) the stroke

deviation angle θ�t�; and 3) the rotation angle about the wing’s
longitudinal axis, ψ�t�. We define the wing’s orientation with the
sequence of rotations (1-3-2) given by the Euler anglesϕ�t�, θ�t�, and
ψ�t�, respectively.
Figure 2 shows the definition of the angles mentioned in the

preceding paragraph. The stroke position angle is formed by the
projection of the longitudinal axis of thewing on the stroke plane and
the unit vector ẑ1 and is positive when the wing is in the ventral
position. The stroke deviation angle is defined as the angle formed by
the longitudinal axis of the wing and the stroke plane and is con-
sidered positive when the wings are above the stroke plane. The
rotation angle is measured on a plane Π, which has an orientation in
3-D space that is always normal to the unit vector b̂2 fixed to thewing;
it is defined as the angle formed by the wing’s chord and the straight
line EE’, which is fixed to the Π plane and coincides with the
direction of the unit vector b̂1 at t � 0. This angle is positive in a
downstroke.
The reader may consult reference [40] for a detailed description of

the stroke parameters and a full mathematical formulation of the
flapping-wing kinematics.

C. Aerodynamic Model

In this paper, we present an enlarged and modified version of the
UVLM. The enlarged method can be applied to 3-D lifting and
nonlifting flows. It is general in the sense that the surface of the body
may undergo any time-dependent deformation while the body
executes any type of maneuver in the space surrounded by moving
air. The flow around the body (meaning the insect’s body and wings)
is assumed to be irrotational and incompressible over the entire
flowfield, except next to the solid boundaries of the body and in the
wake. This approach allows us to consider nonlinear and unsteady
aerodynamic effects associated with large angles of attack and static
deformations. The UVLM also allows us to take all possible
aerodynamic interferences into account as well as to estimate the
spatial–temporal vorticity distribution attached to the body’s surface,
the vorticity distribution in, as well as the position and shape of, the
wakes shed from the sharp edges of the wings.
As a result of the relative motion between the body and the fluid,

vorticity is generated in the fluid in a thin region adjoining the surface
of the body (the boundary layer). This vorticity is shed from the sharp
edges and forms thewake.We consider both the boundary layers and
the wakes to be sheets of vorticity.
The bound-vortex sheet represents the boundary layer on the

surface the body, and its position is specified (i.e., it adheres to, and
moveswith, the body, not with the fluid particles). For the case of thin
wings, the vortex sheets on the upper and lower surfaces are merged
into a single surface along the camber line. On the other hand, the
positions of the free-vortex sheets representing the wakes are not
specified a priori; they are allowed to deform freely until they assume
force-free positions as determined by the solution. The two types of
vortex sheets are joined along the sharp edges where separation

Trailing edge 

Leading edge Wingtip Wing length, R 

Max chord length 

Wingspan 

B
od

y 
le

ng
th

, L

Fig. 1 Geometric model of an insect and the definitions of morphological parameters.
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occurs; the same edges in which the Kutta condition is imposed in a
steady flow.
There is a kinematic relationship between vorticity and velocity

such that, if there is vorticity anywhere in the flowfield, then there is
velocity associated with it everywhere in the flowfield; the velocity
decays with distance from the vorticity. The vorticity in the wake at
any given timewas generated on and shed from thewings at an earlier
time; the velocity associated with this wake vorticity affects the flow
near the wing and therefore the loads on the wings. As a result, the
aerodynamic loads depend on the history of motion, and the wake is
the historian. As the vorticity in thewake is transported downstream,
its influence decreases, and therefore, the historian has a fading
memory. Fading memory is a very good thing because it means that
the part of the wake to be taken into account need not be very long.
Ramamurti and Sandberg [6] studied the effects of viscosity on

unsteady flow surrounding a 3-D Drosophila wing undergoing
flappingmotion. They showed that these effects are minimal and that
lift and drag forces are dominated by inertial effects. The chord-based
Reynolds number that characterizes insect flight is relatively low,
and so the question naturally arises, can UVLM be reliably used to
predict the aerodynamic loads on flapping wings? We provide the
answer here.

1. Mathematical Formulation

The continuity equation for incompressible flow governs the
velocity field V�r; t�:

DivV�r; t� � 0 (1)

The time dependence is introduced by the moving boundary. The
vorticity fieldΩ and thevelocity fieldV coexist and are kinematically
related:

Ω � ∇ × V�r; t� (2)

It follows from this relationship that the velocity associated with a
straight, finite segment of a vortex line with circulation Γ�t� is given
by the Biot–Savart law:

V�r; t� � Γ�t�
4π

ω × r1��ω × r2
��2
2

�ω · �ê1 − ê2�� (3)

Here, r is the field point where the velocity is being computed, r1 and
r2 are the time-dependent positionvectors of the field point relative to
the ends of the straight vortex segment, ê1 and ê2 are unit vectors
parallel to r1 and r2, and ω � r1 − r2. The velocity given by Eq. (3)
satisfies Eq. (1) and is irrotational (Ω � 0) everywhere except on the
vortex segment.
For a field point on or very near the vortex segment itself or its

extension,ω is or nearly is parallel to r1. This causes the behavior of
V�r; t�, as given in Eq. (3), to be troublesome. The troublesome
behavior can be easily circumvented by introducing a “cutoff radius”
δ into Eq. (3):

V�r; t� � Γ�t�
4π

ω × r1��ω × r2
��2
2
�
�
δ
��ω��

2

�
2
�ω · �ê1 − ê2�� (4)

When the field point approaches the vortex line or its extension,
V�r; t�, as given in Eq. (4), smoothly becomes the null vector [41].
The influence of the cutoff radius δ on the velocity is strongly felt in
the immediate vicinity of the vortex line itself but is hardly noticeable
elsewhere. Another option is to use a linear cutoff radius function, in
which each vortex element is enclosed by a cylinder and two
spherical caps. Within this enclosing region, the velocity decreases
linearly toward the vortex line [42].
Standard procedures use a range for the cutoff radius between 10

and 25% of the smallest of the panel dimensions [43].
For a detailedmathematical formulation, the reader can consult the

references [44–46].

2. Discretization of the Vortex Sheets

In the UVLM, the bound-vortex sheets (boundary layers) are
replacedwith a lattice of short, straight vortex segmentswith constant
circulation. These segments divide the surface of the insect’s body
and wings into elements of area (panels), which in general are
nonplanar, with discrete vortex segments along the edges. The model

ψ

β

θ

χ

Longitudinal axis
of the insect body  

Stroke plane 

n̂1 N
o

t̂3

Wing
root 

ˆ
2t

n̂3

ẑ3

2ẑ

Horizontal
plane  

2n̂

(t)

Stroke
plane 

Stroke plane 

Φ

φ

φ

φ

max

min

N

o

Z

B

1n̂
3n̂

2ẑ

3ẑ

3ẑ
2b̂

3b̂

1b̂

a) b)

c) d)

B

Z

(t)

Stroke
plane 

3n̂

N o

1n̂

2n̂

3ẑ

2ẑ

1ẑ

2b̂

1b̂

3b̂
∏(t)

2b̂

E’ 

E 

Wing chord 

3b̂

1b̂

Fig. 2 Stroke parameters definitions: a) body angle and stroke plane angle, b) stroke position angle, c) stroke deviation angle, and d) rotation angle.
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is completed by joining free-vortex lines, which represent the free-
vortex sheets (wakes), to the bound-vortex lattice along the edges
where separation occurs, such as the trailing edges and leading edges
of the wings. The locations in which separation occurs are input and
are not determined by the solution. However, the vortex lattices
representing the wakes (the positions of the vortex segments and the
circulations around them) are determined as part of the solution.
Figure 3 shows examples ofmeshes for the bound-vortex sheets. In

both cases, there exists a gap between thewing root and the separation
zones (zone 1 for the leading edge and zone 2 for the trailing edge).
This adjustment notably improves the shape of the wake near the
wing root.
The velocity field associated with the disturbance created by

the moving body is the superposition of the fields associated with the
vorticity in the bound lattice on the moving body surface and in the
freely deforming wakes.

3. Boundary Conditions

The governing equation of the problem is complemented with the
following boundary conditions:
1) The regularity at infinity condition requires that the velocity

field associatedwith the disturbance to decay away from the body and
it wakes. Hence,

lim
krk2→∞

��VB�r; t� � VW�r; t� � VSW�r; t�
�� � 0 (5)

where krk2 is the distance from the body and its wakes, VB�r; t�
is the velocity associated with the bound-vortex lattice, VW�r; t�
is the velocity associated with the free-vortex lattice being shed from
the wing’s trailing edge and tip, and VSW�r; t� is the velocity
associated with the free-vortex lattice being shed from the leading
wing’s edge. The velocity field obtained from Eq. (4) satisfies this
condition.
2) The no-penetration condition requires that, over the entire

surface of the insect’s body and wings, the normal component of the
fluid velocity relative to the body’s surface must be zero:

�V∞ � VB � VW � VSW − Vp� · n̂ � 0 (6)

Because the vortex sheets are replaced by vortex lattices, the no-
penetration condition given by Eq. (6) is only satisfied at one point in
each panel; these are called control points (CPs), and they are located
at the centroid of the corners of each panel (see Fig. 3).
In addition to the boundary conditions, there are the following

three conditions:
1) There must be continuous pressure in the wake. For an inviscid

fluid, the Kelvin–Helmholtz theorem requires that vorticity be

transported with the fluid particles. This condition is used to obtain
the positions of the vortex segments that comprise the lattices
representing the wake.
2) There must be spatial conservation of the circulation: the

vorticity field is divergenceless. This condition is satisfied by
considering the vortex lattices to be composed of closed loops of
vortex segments with the same circulation.
3) The unsteady Kutta condition must be satisfied. The pressures

on the upper and lower surfaces must vanish along the edges where
separation occurs; this requires that all the vorticity generated along
these edges be shed, and hence, this condition determines the strength
of the vorticity in the wake.

4. Leading-Edge Separation Model

Because the kinematics of winged insects is quite complex, the
vortex shedding from the leading edge depends on the angle between
the local fluid velocity and the wing plane (effective angle of attack).
Several works on leading-edge separation of conventional aircraft
wings have reported that flow attached to the wing starts to separate
when the angle of attack exceeds a critical value of 12–15 deg [26].
Dickinson and Götz [1] found that at 9 deg (a threshold well below
those used by insects) a thin separation bubble, barely visible in the
video images, quickly forms on the upper surface of the airfoil and
remains stable throughout the duration of translation.
Several authors have developed numerical tools based on vortex-

lattice methods that account for leading-edge separation on highly
swept delta wings [47–49]. In the present work, we modified and
extended an existingUVLM in order to include the effects of leading-
edge separation and then used the modified version to calculate the
aerodynamic loads on flapping wings. As in the vortex-lattice
method, the LEV system is also represented by a family of discrete
vortex lines, and the velocity field associated with the leading-edge
system is calculated with the Biot–Savart law. This flowfield is added
to those generated by the other lattices and the freestream. The
leading-edge separation was included by a scheme based upon an
on/off mechanism. This mechanism consists mainly of computing
the value of the effective angle of attack αe at each time step and
comparing it with a reference value; in the present examples, the
reference is αc � 12 deg. If αe ≥ αc, leading-edge separation is
included; conversely, if αe < αc, leading-edge separation is omitted.
Once a vortex segment is shed into the wake, it always remains in the
wake. In Fig. 4, we present the definition of the angle αe as well as the
wakes shed from both the trailing edge and the leading edge.

5. Aerodynamic Influence Coefficients

Generally, the normal component of the velocity of a fluid particle
relative to a control point depends on the superposition of the velocity
fields associated with 1) the bound-vortex lattices, 2) the free-vortex
lattices, and 3) the freestream. The normal component of the velocity
at the control point of ith panel associated with the closed loop of
vortex segments with unit circulations along the edges of jth panel is
denoted by aij. Consequently, the normal component of velocity at
the control point i associated with all the bound vortices is given byP

N
j�1 aijΓj, whereN is the number of panels in the bound lattices and

Γj is themagnitude of the circulation around the closed loop of vortex
segments along the edges of panel j. The no-penetration condition for
the ith panel can be written as follows:

XN
j�1

aijΓj � �V∞ � VW � VSW − Vp� · n̂ � 0 (7)

where �Vp�i is the velocity of body’s surface and n̂i is the unit vector
normal to the surface at the control point of the ith panel. Equation (7)
must be simultaneously satisfied at the control points of all the panels,
i.e., for i � 1; : : : ; N. Thevelocity fields associatedwith thevorticity
in the wakes, the freestream velocity, and the velocity due to the
kinematics of the body are already known and can be transferred to
the right-hand side (RHS):

RHSi � −�V∞ � VW � VSW − Vp� · n̂i (8)
Fig. 3 Discretization of the bound-vortex sheets representing an insect’s
body and wings.
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Then, writing Eq. (7) for each panel on the bound-vortex lattice, we
obtain the following system of linear equations:

A�t�Γ�t� ≡

2
6664

a11 a12 : : : a1N
a21 a22 : : : a2N
..
. ..

. . .
. ..

.

aN1 aN2 : : : aNN

3
7775

8>>><
>>>:

Γ1

Γ2

..

.

ΓN

9>>>=
>>>;
�

8>>><
>>>:

RHS1
RHS2

..

.

RHSN

9>>>=
>>>;

(9)

If the different parts of the insect (head, thorax, abdomen, and wings)
are not moving relative to each other, then the influence coefficients
are evaluated only once; otherwise, they are reevaluated at each time
step. In this work, the head, thorax, and abdomen are modeled as a
single rigid body, and thewings have a prescribedmotion throughout
the entire stroke cycle. Hence, the only parts of the aerodynamic
influence matrix A�t�, to be updated at each step time are those that
take into account the body–wing and the wing–wing aerodynamic
interference. Once Eq. (9) is solved, the next step is to calculate the
aerodynamic loads.

6. Aerodynamic Loads

The aerodynamic loads on the lifting surfaces (insect’s wings) are
computed as follows:
1) For each element the pressure jump at the control point is

computed with the unsteady Bernoulli equation,

∂
∂t
Ψ�r; t� � 1

2
V�r; t� · V�r; t� � p�r; t�

ρ
� 1

2
V∞ · V∞ �

p∞

ρ
(10)

where ∂∕∂t denotes the partial time derivative at a fixed location in an
inertial reference frame.
2) The force on each element is computed as the product of the

pressure jump times the element area obtained from the sum of
one-half of the cross products of two vectors along adjoining edges of
the panel times the normal unit vector obtained from the cross product
of the two diagonals.
3) The resultant forces and moments are computed as the vector

sum of the forces and their moments about a common point.
However, as the UVLM is based on thin airfoil theory, it does not

account for the leading-edge suction [50], and only the component
normal to the noncirculatory velocity is retained, i.e., the contribution
of pressure to the local lift. The contribution of the forces on the
elements of the lattice to the induced drag/thrust is aligned with the
instantaneous noncirculatory velocity, and it can be computed, for
example, through the approximation proposed by Katz and
Plotkin [26], by the analogy adopted fromSane [35] or by themethod
developed by Ehlers and Manro [51], in which the leading-edge
suction is calculated in the same computer code that evaluates the
pressure distribution due to the LEV.
To accurately compute the thrust generated by the flappingmotion

of a planar wing, the contribution of the leading-edge suction force
must be included in the calculations, causing the resultant aerody-
namic force vector to tilt toward the leading edge. The calculation of

this force has not been included in the present paper, leading to an
underestimation of the total thrust.
In its present form, the evaluation of ∂

∂tΨ�r; t� is problematic, but
this term can be put in a form thatmakes its evaluation relatively easy.
Detailed explanations of the treatment of each term in Eq. (10) are
given in [44–46].
Once the loads have been computed, the panels in the wakes are

“convected” to their new positions by [52]:

Rnode�t� Δt� ≈Rnode�t� � Vnode�t�Δt (11)

where Δt is the time increment.
Because all these quantities are functions of time, the question of

which instantaneous quantities to use in the approximation is raised.
There are several options; for example, one can use the quantities that
were calculated at the previous time step, the present time step, or
their averaged values for the two time steps. In all cases except the
first, iterations are needed, which increase the computational time.
Kandil et al. [52] showed that the first option is stable, and there are
little differences in the computed results for the various options;
therefore, the first option was used to compute all the results in
this work.
Then the preceding steps are repeated to find the loads at the next

time step.

III. Numerical Results

In this section, we present some results obtained with the present
numerical tool relevant to flapping-wing vehicles. The code was
written in FORTRAN 90 and compiled to run inWindows platforms.
Automatic optimization options, which are specific for Intel
processors, have been used to achieve higher performance. For all
cases, the code was run on a desktop computer with an i7 processor,
RAM DDR3 of 4 GB, and a hard disk of 2 TB.
The results obtained with the present numerical tool were

compared with some previously obtained numerical results and
experimental data to assess the validity and limitations of the present
code. First, we compared the present results for a flapping/twisting
wing with the Euler computations of Neef and Hummel [38] and the
results obtained by Stanford and Beran [28] using their version of the
UVLM. Then, we used force data from robofly experiments
published by Dickinson et al. [7]. Finally, we present numerical
results for a Drosophila in hovering flight.

A. Validation of the Numerical Model

Neef and Hummel considered a rectangular wing with an aspect
ratio AR � 8, a NACA 0012 airfoil profile, a flapping amplitude of
15 deg, and a reduced frequencyof k � 0.1 (k � ωc∕2∕V∞, whereω
is the flapping frequency and c is the wing chord). The flapping
motion is sinusoidal, and an out-of-phase wing rotation (twist) about
the leading edge is imposed linearly along the span, with 4 deg of
twist at the tip. The flapping period Tf was discretized into 40 equal
time steps. Figure 5a provides the kinematic pattern, two sets of

Leading-edge
separation zone  

Wake shedding from the
leading edge 

Wake shedding
from the trailing
edge   

e

Local fluid velocity  

Unitary vector normal to the
lifting surface  

n̂

90º
Motion
direction  

Fig. 4 Separation zones and definition of the angle αe.

ROCCIA ETAL. 2633

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

M
A

R
Y

L
A

N
D

 o
n 

A
pr

il 
27

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
22

62
 



comparative results of the lift coefficient for a flapping/twisting wing
with its root chord inclined at two constant angles of attack of 0 and
4 deg in Fig. 5b, and a snapshot of thewake pattern obtained with the
present aerodynamic model in Fig. 5c. In Fig. 5b, the agreement
among the three sets of results is excellent. The slight discrepancies
between the lift force computed by Stanford and Beran [28] and the
lift force calculated in this work can be attributed to the specification
of some user-defined parameters, such as the cutoff radius and
differences in the two versions of Bernoulli’s equation. It is evident in
Fig. 5c that the wing-tip vortex system has been omitted. The wing
has a fairly large aspect ratio, and it is likely that this does not affect
the loads much. The wing-tip-vortex system was also ignored by
Stanford and Beran [28].

B. Force Comparison with Robofly Experiments

Using the present aerodynamic model, we obtained the lift forces
from numerical simulations and compared them with the
experimental data reported by Dickinson et al. [7]. The experiment
they carried out consists of a dynamically scaled model of a
Drosophila Melanogaster, dubbed robofly. The motion of the two
wings was driven by an assembly of six computer-controlled stepper
motors, and each wing was capable of rotational motion about three
axes. Thewings were immersed in a 1 × 2 m cross-section tank filled
with mineral oil (ρoil � 880 kg∕m3, νoil � 115 cSt). Robofly’s
wings have a length of 25 cm (from the force sensor to the wing tip),
are made of Plexiglas®, and were cut according to the planform of a
Drosophilawing. Thewing executed an insectlike flappingmotion at
a frequency of 0.145 Hz with the wing tip tracing out a flattened
figure of eight. The viscosity of the oil, the length of thewing, and the
flapping frequency were chosen in order to match the Reynolds
number Re typical of the flight of a fruit fly (Re � 136). The
kinematic pattern employed by Dickinson’s team consists of a stroke
amplitude of 160 deg, and an angle of attack at midstroke of 40 deg
for both upstroke and downstroke. Three different phase relations
between the wing rotation and the reversal stroke were used:

1) The wing rotation precedes the reversal stroke by 8% of the
wing-beat cycle.
2) The wing rotation occurs symmetrically with respect to the

reversal stroke.
3) The wing rotation is delayed with respect to the stroke reversal

by 8% of the stroke cycle.
Figure 6 shows the robofly mechanism, the wing planform of the

robofly, and the kinematic patterns used by Dickinson et al. [7].
Three numerical simulations were obtained to determine the effect

of the different phase relations between wing rotation and reversal
stroke. The wing-beat cycle was discretized in 100 time steps, and
each wing was discretized into 384 aerodynamic panels. We use two
different values for the cutoff radius. We use a cutoff radius δ � 0.15
(15%) to compute the influence of the trailing-edge vortex over itself
and over the bounded sheet. For computing the LEV influence over
itself and over the bounded sheet, we use a cutoff radius δ � 0.20
(20%). Cutoff radius values smaller than 20% for LEV produce too
much noise on lift forces. It is noteworthy that the ad hoc procedure
used in this paper uses an embedded cutoff. Furthermore, the
modified singular core K (R −R0; δ) in Eq. (4) depends on the
magnitude of vorticity segment. This feature makes this technique
well suited to treat problems involving structures undergoing
complex motions.
In Fig. 7, we present numerical results for the lift force with and

without considering leading-edge separation and compare them with
those obtained in Dickinson’s experiment described earlier.
The results from the aerodynamic model that includes leading-

edge separation are in remarkable agreement with the experimental
data. On the other hand, the lift curve obtained with and without
leading-edge separation coincides almost exactly in the rotational
phases (reversal stroke). Some differences can be appreciated on the
translational phases (downstroke/upstroke), in which previous
studies have shown that the LEV is particularly important and
contributes substantially to the lift forces. Quantitatively, the
maximum difference is 19% and occurs basically in the second half-
stroke. The pair of opposite spikes at stroke reversals is well captured
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Fig. 5 a) Flapping and twistingmotions used byNeef andHummel [38], b) comparison of the current lift coefficientwith results from [28] and [38], and c)
a snapshot of the wake evolution (angle of attack of 4 deg).
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by the numerical model. They occur at the same points in time
without any significant lag, thus accounting well for unsteadiness of
the flow. Moreover, the magnitudes of the negative and positive
spikes for lift are consistent with the experimental data.
The results presented here are very encouraging because they show

better agreement than those in previously published comparisons, as
for instance the CFD study by Sun and Tang [13], which showed
relatively poor agreement with the experiments of Dickinson et al.
[7], and the 2-D UVLM model combined with the blade-element
theory developed by Ansari et al. [8,9], which showed similar trends
for lift and thrust forces, but the magnitudes of the positive and
negative spikes for lift and thrust overestimated the experimental
measures reported by Birch and Dickinson [53].
There is much evidence that flying insects actively change their

wing kinematics in order to optimize the aerodynamic forces
throughout a specific maneuver. In fact, the forces produced by
insects are very sensitive to the rotational timing, which is consistent
with the kinematic changes exhibited by Drosophila during steering
behaviors. According to these results, by advancing the timing of
rotation on both wings, a fly could generate the symmetrical increase
required for forward or upward acceleration. As shown in Fig. 7, the
trend andmagnitude of lift associatedwith the three cases analyzed in
the preceding paragraphs (advanced, symmetrical, and delayed
patterns) have been successfully captured by the current model.
These results are significant because they justify the use of the
UVLM to study the 3-D aerodynamic behavior of insects executing
different maneuvers. Figure 8 shows the temporal evolution of the
wake of the robofly for the case of advanced pattern.

Another remarkable feature shown in Fig. 7 is the synchrony
between the experimental measurements and the numerical
predictions obtained from the current vortex-lattice model. To
properly appreciate this feature, we compute the discrete fast Fourier
transform for the force data from numerical simulations and
experiments. This analysis is presented in Fig. 9 only for the lift force
shown in Fig. 7a (advanced pattern); a similar analysis can be carried
out for symmetrical and delayed patterns.
The frequency content for Dickinson’s data clearly shows the

flapping frequency of themotion (point A in Fig. 9,nf � 0.1446 Hz)
and twice this frequency (point B in Fig. 9, 2nf � 0.2893 Hz)
togetherwith a number of harmonics. These harmonics appear because
there are two half-strokes per wing-beat cycle (the wing-passing
frequency).Moreover, the frequency content of the lift force computed
by the current model closely matches the flapping frequency of the
motion (nf � 0.145 Hz and 2nf � 0.29 Hz). Another estimate of the
quality of the numericalmodel can be inferred by comparing thevalues
of the mean lift �L. The square and circular symbols in Fig. 9 represent
the experimental mean lift force (0.2301 N) and the computed mean
lift force (0.2406 N), respectively. The difference between the experi-
mental and numerical mean lift force is barely of 4.5%.
It is noteworthy that the reference value αc at which vorticity

shedding from the leading edge begins does not have a significant
influence on the results presented in the preceding paragraphs.
Specifically, we investigated a range between 8 and 15 deg for αc,
noticing slight differences that do not affect the shape and magnitude
of the lift force. This analysis was performed for each of the motion
patterns considered.
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The fact that the frequency content and themean lift force between
the experimental and numerical data are so similar implies that the
underlying physical phenomena (e.g., vortex shedding) are well
captured. The extended UVLM model developed and implemented
in this work is based on an asymptotic approximation to the solution
of the Navier–Stokes equations that improves as the Reynolds
number increases; it has, at times, been referred to as the infinite-
Reynolds-number approximation. This model recognizes viscous
effects as being responsible for the presence of a boundary layer on
the surface of the body, but the analysis of the viscous flow in the
boundary layer is not included (flow separation, transition, and
reattachment, among other phenomena [54]). Therefore, with this
approximation, the locations of separation from the body’s surface
cannot be predicted but must be input, such as at the leading edge,
wing tip, etc. Outside the boundary layer, the flow is governed by the
incompressible version of Euler’s equation (Laplace’s equation).
Only the pressure on the surface of the body, as predicted by this
inviscid outer flow, is used to determine the forces; thus, the predicted
loads are due solely to inertial effects. These calculated loads are, for
the cases considered here, in extraordinarily good agreement with
experimental results in tendency, synchronism, and magnitude.
Because viscous effects were not included for the cases considered
here, it seems reasonable to interpret the present results as an
indication that inertial effects dominate viscous effects, at least for
some flights at small scales. Moreover, the results, for the cases
presented here, definitely show the interaction among vortices to be
the main feature, which allows insects to generate enough lift to stay
aloft. This finding suggests the strong likelihood that the UVLM
could be a very accurate and efficient tool for future studies of insect
aerodynamics.
The wing mesh and time-step size used to carry on the numerical

simulations presented in the preceding paragraphs were determined
bymeans of a simplified study of the influence of the panel density on
the lift. Such a convergence analysis was performed for the advanced
motion pattern; similar results were obtained for the other twomotion
patterns (symmetrical and delayed). These results are presented in
Table 2.
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Fig. 8 Robofly wake pattern: a) without LEV and b) with LEV.
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In Fig. 10, we show the lift force for each case study reported in
Table 2; solid line with circular markers for 12 panels, dotted line for
72 panels, center line for 120 panels, solid line for 384 panels and
broken line for 1200 panels per wing. The analysis of the five cases
presented in Table 2 shows that for a poor discretization (12 or 72
panels per wing) the lift force exhibits significant variations, which is
also reflected in a mean lift value much larger than the value reported
by Dickinson et al. [7]. As the mesh is refined lift curves show no
significant variations (Fig. 10a) and the mean lift approaches the
experimental results (Fig. 10b). Furthermore, the frequency contents
of the lifts are essentially the same. This characteristic is because the
general form of these curves is properly captured, even for poor
aerodynamic meshes. However, it should be noted that the high-
density mesh (1200 panels) shows a marked difference immediately
after supination (approximately 18%). In this case, one can see,
moreover, a slight interference in the upstroke, which is possibly due
to an excessive refinement of the mesh [44,52,55]. It is also
noteworthy that the computational cost grows enormously as the
mesh is refined. A typical run for a mesh composed by 384 panels
takes approximately 55 min, whereas the run time is increased to 5 h

for a mesh composed by 1200 panels. In summary, we conclude that
aerodynamic meshes discretized with 120 and 384 panels produce
very good results.

C. Numerical Simulations of the Aerodynamics of a Fruit Fly in
Hover

As a test of the versatility of the present numerical tool, numerical
results for the aerodynamics of a fruit fly in hover are presented. Data
reported by Fry et al. [56] and Bos et al. [57] on the actual kinematics
of a fruit fly in hover were used to describe the wing motion over a
flapping cycle (see Fig. 11a); solid line for the stroke deviation angle,
dotted line for the stroke position angle and broken line for the
rotation angle. This model was derived from measurements on real
fruit flies and is therefore considered to be the most realistic
representation of fruit-fly kinematics. The adopted kinematics
includes the deviation angle, which results in a figure-of-eight pattern
(see Fig. 11b).
To obtain the curves presented in Fig. 11a we performed a least-

squares fit using Fourier series over a set of discrete values coming
from experimental measurements (circular markers). In Fig. 11b, we
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Fig. 11 a) Actual kinematics of a fruit fly in hovering; circular markers indicate experimental data. b) Trajectory of the wing-tip (figure of eight).
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Fig. 10 a) Lift force for the advanced pattern motion (first cycle) and b) mean lift value vs panels number.

Table 2 Convergence analysis

Case/density mesh Δt∕Tf Step time Mean lift, N Frequency, Hz

Experimental — — — — 0.23010 0.1446–0.2893
Numerical
12 panels 0.040 25 0.27159 (�18.0%) 0.145–0.290
72 panels 0.020 50 0.27684 (�20.0%) 0.145–0.290
120 panels 0.020 50 0.24359 (�5.8%) 0.145–0.290
384 panels 0.010 100 0.24060 (�4.5%) 0.145–0.290
1200 panels 0.005 200 0.23352 (�1.5%) 0.145–0.290
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present a numerical simulation of the wing-tip path of a fruit fly in
hover. For a better visualization, thewing-tip trajectorywas projected
onto the sagittal plane [40,58], and small circles mark the leading
edge. The line attached to these points at each instant represents a
portion of thewing’s chord and indicates the orientation of thewing’s
cross section during the flapping cycle.
The setup of the numerical experiment shown in this section

consists of 1) a flapping frequency nf � 220 Hz, 2) a wing length
R � 2.5 mm and wing area S � 2.21 mm2, and 3) a fully spatial
discretization of the insect with 3448 aerodynamic panels and 100
step times. These magnitudes correspond to a Reynolds number of

133 for a 3-D flapping wing in hover (Re3D � 4ΦnfR2∕�vairAR�,
where Φ is measured in radians) [34,56]. Because of the complex
motion that thewings experience during a stroke cycle as product of a
real kinematics (a slightly deformed eight pattern), the wake shed
from the leading edge during the downstroke is cut by thewing when
it moves in the opposite direction (upstroke). Because this issue was
not addressed in the present framework, the LEV is excluded in this
analysis. Figure 12 shows the wake pattern for the first half-stroke.
Figure 12 shows how the fluid particles are driven down as they are

shed from the sharp edges, thereby revealing the presence of lift. In
addition, it can be seen that the aerodynamic model used in this work

Fig. 12 Wake pattern for the first half-stroke.
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captures in great detail the simultaneous aerodynamic interference
among the insect’s body and wakes, the insect’s wings and wakes,
and the two wakes.
Figure 13 shows the lift force for a full stroke cycle and the

diagram of thewingmotion indicating the magnitude and orientation
of the instantaneous force vectors generated throughout the stroke
cycle (broken line for lift considering deviation angle and the insect's
body; center line for lift with a null deviation angle considering the

insect's body; solid line for lift considering deviation angle, the insect's
body and a time-step halved; and dotted line for lift considering
deviation angle and without insect's body). In Fig. 13b, black lines
indicate the position of the wing at several temporally equidistant
points during each half-stroke. Small circles mark the leading edge.
The effect of the realistic fruit fly’s wing kinematics results in

forces that differ significantly from those obtained from simplified
wing kinematic models commonly used in the literature. The most
obvious particularity of the realistic fruit-fly model is the extra
“bump” in the angle of attack just after the stroke reversal, compared
to the robofly model (see Fig. 11a). From Fig. 13b, it is observed that
the extra bump generates an increase in lift at the beginning of both
downstroke and upstroke. After the bump the angle of attack more or
less matches the plateau found in robofly, which results in an almost
constant force distribution (see Fig. 13b).
Another important issue present in the realistic fruit-fly model is

the deviation from the stroke plane. This deviation causes a figure of
eight instead of a flat pattern. Because deviation may introduce a
large velocity component perpendicular to the stroke plane, the
effective angle of attack is increased just after each reversal stroke.
On the contrary, at the end of a stroke thewingmoves up again, which
leads to a decrease in the effective angle of attack. The complex
features associated with the deviation are reflected on the
aerodynamic forces by a severe reduction in the lift at the end of
each stroke (where the vector forces have almost a horizontal
direction) and a subsequent increase of it just after each rotational
phase. In summary, the deviation is leveling the force distributions,
whereas the mean lift remains practically unaffected. We tested this
peculiarity by performing numerical simulations with and without
deviation and found that the mean lift force considering deviation
is 12% higher than a configuration with a null deviation angle
( �Lθ � 1.112 × 10−5 N and �Lθ�0 � 0.9881 × 10−5 N, where the
subscripts θ and θ � 0 indicate with and without deviation,
respectively). This leads to the suggestion that aDrosophila could be
using this deviation to level the wing loading and as a possible
instrument of control to stabilize the flight when the creature is
executing different maneuvers.
The results presented in this section were computed only for the

first stroke cycle, and therefore, these contain initial transients. To
assess the time convergence of these results, we performed a
numerical simulation with a time-step halved, obtaining a lift curve
with a little noise in the second translation phase (upstroke) (see
solid line in Fig. 13a). It is because a time-step halved implies a
refinement of the aerodynamic mesh, and therefore, the wake
becomes messy from the second translation phase onward. With
respect to the insect’s body presence, it does not affect the lift force
for the flight configuration studied in this work (dotted line in
Fig. 13a). Certainly, this flight configuration, a hover mode, is
symmetrical, and therefore, we cannot make general conclusions
about the influence of the insect’s body on the aerodynamic forces.
A complete study of this nature should involve nonsymmetrical
flight conditions and inclined air streams.
Finally, we investigated whether the insect’s weight can be

balanced by the mean lift force �Lθ calculated from the lifting force
considering deviation angle presented in Fig. 13a.Data for theweight
of a Drosophila Melanogaster were taken from Fry et al. [59]. They
used a technique based on a measured relationship between the
wing’s length and the body’s mass (sample number N � 53) to
estimate the mass of a fly and found that it lies between 1.16 and
1.40 mg, which corresponds to a weight in the range of 11.4 to
13.7 μN. For the simulation shown in this section, the average
vertical force throughout the stroke was 11.12 μN, which, in
principle, is sufficient to support theweight of a fruit fly.Moreover, it
must be emphasized that in this case the leading-edge separation was
not taken into account, an effect that undoubtedly increases the lift
forces during the translational phases as stated in Sec. III.B.

D. Limitations of the Model

Although the numerical results obtained with the present model
have quite accuratelymatched experimental observations (Fig. 7) and

Downstroke
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a) 
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Fig. 13 a) Lift force for the first stroke cycle (real kinematics of a
Drosophila in hover) b) instantaneous force vectors superimposed on a

diagram of wingmotion for the real kinematics presented in Fig. 11a and
c) force balance during hovering; the mean flight force is computed from
the data plotted in Fig. 13a.
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have been able to predict good results for an insect in hover (Figs. 12
and 13), it still is an inviscid model and, therefore, has some
limitations.
One such limitation is that the present aerodynamic model is the

result of an asymptotic approximation to the Navier–Stokes equa-
tions for a Reynolds number tending to infinity that does not include
an analysis of the boundary layer, and therefore, viscous effects are
not capturedby themodel.The only effect incorporated into the current
model is the phenomenon of leading-edge separation by means of a
simple scheme based upon an on/off mechanism (Sec. II.C.4).
Sometimes, in the computation of the velocity from the Biot–

Savart law, a control point happens to be very close to a vortex
segment. The result is an unreasonably high predicted velocity and
therefore an excessive displacement of the aerodynamic nodes
(connectors) defining each vortex segment in the wake. These
numerical instabilities are much more significant in flight configu-
rations in which thewakes remain close around the insect’s body and
wings, hovering being an extreme condition (in which the freestream
velocity is zero). Another significant limitation is related to the
common situation when a hovering wing cuts through its own wake;
this issue is not addressed in this work, but definitely it should be
considered in future work.
Future research should include the investigation of amechanism to

combine the UVLM with the vortex-particle method in order to
improve the spatial description of the wakes, run several stroke
cycles, and improve the performance of the model in multiple flight
configurations [30,60,61]. In addition, the use of the fast multipole
tree to rapidly compute the velocity contribution from the time-
varying wakes should be explored [30,60–62].
Despite the limitations outlined in the preceding paragraphs, the

modified model presented in this article is an excellent tool for
studying the aerodynamics of flying insects and small birds.

IV. Conclusions

In this paper, the development of a computational tool that is an
extension of the three-dimensional version of the unsteady
vortex-lattice method (UVLM) was described. The aerodynamic
model was properly modified to include leading-edge separation. To
consider insects with dissimilar morphologies and several sizes, a
preprocessor was developed that allows one to 1) generate diverse
geometries for the insect’s body (head, thorax, and abdomen) and
wings and 2) use different kinematic patterns for the motion of
the wings.
Some important conclusions can be drawn from the results

presented in the preceding sections. These results help to better
understand the underlying physics associated with the aerodynamics
of flapping wings whose complexity is well accepted but at the same
time usually not well understood.
Themodelwas validated by comparing its resultswithDickinson’s

experimental data. The lift force predicted by the current model
showed extraordinarily good agreement in trend and magnitude with
the experimental data obtained from the robofly for three different
timings between thewing’s rotation and reversal stroke. Comparison
of frequency contents of this time-dependent flow highlighted the
temporal consistency between themodel results and the experimental
data. Finally, it was found that the average vertical force computed
with the fruit-fly model in hovering is sufficient to bear its weight
throughout the stroke cycle.
These results show that the present aerodynamic model is indeed

capable of predicting, with notable accuracy, the forces and the
flowfield generated by insectlike flapping wings. The similarity
found in tendency, synchronism, and magnitude among the lift
forces when compared against experimental results shows that the
underlying flow features are also well captured. Moreover, it seems
reasonable to interpret the present results as an indication that inertial
effects dominate viscous effects, at least for some flights at small
scales, and show the interaction among vortices to be the main
feature, which allows insects to generate enough lift to stay aloft. This
finding suggests the strong likelihood that the UVLMcould be a very
accurate and efficient tool for future studies of insect aerodynamics.

Another feature that makes the current strategy attractive is the
low computational cost compared to computational fluid dynamics
simulations, finite element approaches, or direct numerical
simulations.
Although the numerical tool presented here is a good start toward a

better understanding of the aerodynamic behavior of insect flight, in
the future, it will be necessary to carry out simulations that include
structural dynamics, control systems, and highly complex flight
conditions in indoor and outdoor environments.
Currently, a numerical algorithm is being developed to combine

the aerodynamic model presented in this work with a dynamical
model based on a multibody approach also being developed by the
authors.
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